781 research outputs found

    Semi-blind Sparse Image Reconstruction with Application to MRFM

    Get PDF
    We propose a solution to the image deconvolution problem where the convolution kernel or point spread function (PSF) is assumed to be only partially known. Small perturbations generated from the model are exploited to produce a few principal components explaining the PSF uncertainty in a high dimensional space. Unlike recent developments on blind deconvolution of natural images, we assume the image is sparse in the pixel basis, a natural sparsity arising in magnetic resonance force microscopy (MRFM). Our approach adopts a Bayesian Metropolis-within-Gibbs sampling framework. The performance of our Bayesian semi-blind algorithm for sparse images is superior to previously proposed semi-blind algorithms such as the alternating minimization (AM) algorithm and blind algorithms developed for natural images. We illustrate our myopic algorithm on real MRFM tobacco virus data.Comment: This work has been submitted to the IEEE Trans. Image Processing for possible publicatio

    Master/worker parallel discrete event simulation

    Get PDF
    The execution of parallel discrete event simulation across metacomputing infrastructures is examined. A master/worker architecture for parallel discrete event simulation is proposed providing robust executions under a dynamic set of services with system-level support for fault tolerance, semi-automated client-directed load balancing, portability across heterogeneous machines, and the ability to run codes on idle or time-sharing clients without significant interaction by users. Research questions and challenges associated with issues and limitations with the work distribution paradigm, targeted computational domain, performance metrics, and the intended class of applications to be used in this context are analyzed and discussed. A portable web services approach to master/worker parallel discrete event simulation is proposed and evaluated with subsequent optimizations to increase the efficiency of large-scale simulation execution through distributed master service design and intrinsic overhead reduction. New techniques for addressing challenges associated with optimistic parallel discrete event simulation across metacomputing such as rollbacks and message unsending with an inherently different computation paradigm utilizing master services and time windows are proposed and examined. Results indicate that a master/worker approach utilizing loosely coupled resources is a viable means for high throughput parallel discrete event simulation by enhancing existing computational capacity or providing alternate execution capability for less time-critical codes.Ph.D.Committee Chair: Fujimoto, Richard; Committee Member: Bader, David; Committee Member: Perumalla, Kalyan; Committee Member: Riley, George; Committee Member: Vuduc, Richar

    Effects of Relativistic Dynamics in ppppπ0pp \to pp \pi^0 near Threshold

    Full text link
    The cross-section for threshold π0\pi^0 production in proton-proton collisions is evaluated in the framework of the covariant spectator description. The negative energy intermediate states are included non-perturbatively and seen to yield a considerably smaller contribution, when compared to perturbative treatments. A family of OBE-models with different off-shell scalar coupling is considered.Comment: 10 pages, 3 figures, 1 tabl

    IL-7 Receptor Signals Inhibit Expression of Transcription Factors TCF-1, LEF-1, and RORγt: Impact on Thymocyte Development

    Get PDF
    Intrathymic T cell development depends on signals transduced by both T cell receptor and cytokine receptors. Early CD4−CD8− (double negative) thymocytes require interleukin (IL)-7 receptor (IL-7R) signals for survival and proliferation, but IL-7R signals are normally extinguished by the immature single positive (ISP) stage of thymocyte development. We now demonstrate that IL-7R signals inhibit expression of transcription factors TCF-1, LEF-1, and RORγt that are required for the ISP to double positive (DP) transition in the thymus. In addition, we demonstrate that IL-7R signals also inhibit TCF-1 and LEF-1 expression in mature peripheral T cells. Thus, the present work has identified several important downstream target genes of IL-7R signaling in T cells and thymocytes that provide a molecular mechanism for the inhibitory influence of IL-7R signaling on DP thymocyte development. We conclude that IL-7R signals down-regulate transcription factors required for the ISP to DP transition and so must be terminated by the ISP stage of thymocyte development

    Spin-orbit coupling effects on spin-phonon coupling in Cd2Os2O7

    Full text link
    Spin-orbit coupling (SOC) is essential in understanding the properties of 5d transition metal compounds, whose SOC value is large and almost comparable to other key parameters. Over the past few years, there have been numerous studies on the SOC-driven effects of the electronic bands, magnetism, and spin-orbit entanglement for those materials with a large SOC. However, it is less studied and remains an unsolved problem in how the SOC affects the lattice dynamics. We, therefore, measured the phonon spectra of 5d pyrochlore Cd2Os2O7 over the full Brillouin zone to address the question by using inelastic x-ray scattering (IXS). Our main finding is a visible mode-dependence in the phonon spectra, measured across the metal-insulator transition at 227 K. We examined the SOC strength dependence of the lattice dynamics and its spin-phonon (SP) coupling, with first-principle calculations. Our experimental data taken at 100 K are in good agreement with the theoretical results obtained with the optimized U = 2.0 eV with SOC. By scaling the SOC strength and the U value in the DFT calculations, we demonstrate that SOC is more relevant than U to explaining the observed mode-dependent phonon energy shifts with temperature. Furthermore, the temperature dependence of the phonon energy can be effectively described by scaling SOC. Our work provides clear evidence of SOC producing a non-negligible and essential effect on the lattice dynamics of Cd2Os2O7 and its SP coupling.Comment: 12 pages, 5 figures, accepted for publication at Rapid Communication in Physical Review

    Tumour cell labelling by magnetic nanoparticles with determination of intracellular iron content and spatial distribution of the intracellular iron

    Get PDF
    Abstract: Magnetically labelled cells are used for in vivo cell tracking by MRI, used for the clinical translation of cell-base therapies. Studies involving magnetic labelled cells may include separation of labelled cells, targeted delivery and controlled release of drugs, contrast enhanced MRI and magnetic hyperthermia for the in situ ablation of tumours. Dextran-coated super-paramagnetic iron oxide (SPIO) ferumoxides are used clinically as an MR contrast agents primarily for hepatic imaging. The material is also widely used for in vitro cell labelling, as are other SPIO-based particles. Our results on the uptake by human cancer cell lines of ferumoxides indicate that electroporation in the presence of protamine sulphate (PS) results in rapid high uptake of SPIO nanoparticles (SPIONs) by parenchymal tumour cells without significant impairment of cell viability. Quantitative determination of cellular iron uptake performed by colorimetric assay is in agreement with data from the literature. These results on intracellular iron content together with the intracellular distribution of SPIONs by magnetic force microscopy (MFM) following in vitro uptake by parenchymal tumour cells confirm the potential of this technique for clinical tumour cell detection and destruction
    corecore